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Among the popular techniques for acoustic source identification in complex environments are the
Statistically Optimal Near Acoustic Holography (SONAH) and the Inverse Boundary Element Method
(IBEM). These two methods are quite different regarding the underlying assumptions and the practical
implementations: Whereas SONAH performs the back-propagation of the sound field to a plane surface;
the IBEM has no restrictions on the radiating geometry. On the other hand, IBEM requires the
generation of a surface mesh and a time consuming solution process. The present paper compares the
performance of the methods for a number of experimental test cases and studies the influence on the
performance of the models when changing selected parameters.

1 Introduction

Today, several methods exist for calculating the veloc-
ity and/or sound pressure on a vibrating surface based
on measurements of particle velocities or (more often)
sound pressures at points outside the surface. If the
measurement points are relatively close to the vibrating
surface, the measurement is able to capture evanescent
components of the radiated sound field, and the meth-
ods for reconstructing the surface velocity or pressure
belong to the area of Near-field Acoustical Holography
(NAH).

Methods of NAH can be placed in two groups: Sev-
eral methods like the original NAH based on spacial
Fourier transforms, the Statistically Optimized Near-
field Acoustical Holography (SONAH) and the Helmholtz
Equation Least-Squares (HELS) method are based on
assumptions on the source geometry (i.e. planar, spher-
ical or cylindrical) whereas methods like the Inverse
Boundary Element Method (IBEM) and the Equivalent
Source Method (ESM) can deal with general geometries.

However, a general method like the IBEM might not
be the best choice in many situations. The primary
strength of the IBEM is its ability to deal with general
geometries, but the cost is that a discretized model of
the structure is needed and that the calculation time
typically is large compared to the other methods. Fur-
thermore, in order to fully resolve the vibrational pat-
tern of a structure, the measurement surface should sur-
round the radiating surface, which often means that a
complicated setup of microphones is needed. Therefore,
it is sometimes desireable to use IBEM with microphone
arrays designed for use with e.g. SONAH, i.e. micro-
phones arranged in a fixed and regular planar grid. In
these cases it turns up that the IBEM typically is able
to reconstruct the vibrational pattern on the surfaces
of the radiating structure, that is close to the measur-
ment surface: surface vibrations of remote surfaces are
associated with small singular values, and they are con-
sequenly suppressed by the regularization.

In the present paper a microphone array of 8 by 8 regu-
lary spaced microphones is used to reconstruct the sur-
face velocity of a steel plate mounted in a rectangular
box. Hence, that situation is well suited for the SONAH
method, which therefore will be used as the benchmark
test case.

Two Inverse Boundary Element Method strategies are
considered. One method is based on a direct BEM for-
mulation, which deals with the surface velocity and pres-
sure directly, whereas the other is is an indirect method
based on the Single Layer Formulation (SLF), that deals
with a source distribution with no physical quantity di-

rectly associated.

2 Theory

All the methods considered work in the frequency do-
main and the time factor ejωt, where ω is the angular
frequency, will be supressed throughout the text. Hence,
the governing differential equation for the sound pres-
sure p is Helmholtz equation,

∇2p + k2p = 0, (1)

where the wavenumber k = ω/c, and c is the speed of
sound.

The particle velocity in the direction n is related to the
pressure through Euler’s equation

vn =
−1
jωρ

∇p · n, (2)

where ρ is the rest density of the fluid.

2.1 SONAH

In SONAH the key idea is to represent the sound pres-
sure pF in a given set of positions as the (infinite) sum
of plane and evanescent waves of complex amplitudes a
[1],

pF = Aa. (3)

Each column in the matrix A represents a plane or
evanescent wave, and each row is the value of these
wavefunctions at the measurement points. In the limit
of an infinite number of waves, the number of columns
of A and rows of a tend to infinity, and Eq (3) can not
be solved directly. However, it can be shown [2] that
an alternative formulation can be used to calculate the
regularized solution for the sound pressure and particle
velocity on the reconstruction plane. An important pa-
rameter of SONAH is the virtual source plane, at which
the plane and evanescent waves have the same ampli-
tude [2]. Previous studies have shown that a distance
of about 1.5 microphone spacing (i.e. 4.5 cm) from the
reconstruction surface is a good overall choice, and this
value will be used in this study.

2.2 IBEM

The Helmholtz Integral Equation (HIE) establishes the
relation between the pressure at a field point p(P ) and
the pressure p(Q) and the normal particle velocity vn(Q)
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on a surface S by an integral equation [3]:

C(P )p(P ) =
∫

S

(
∂G(R)

∂n
p(Q) + jωρG(R)vn(Q)

)
dS,

(4)
where the Green’s function G(R) is defined as

G(R) = G(|P −Q|) =
e−jkR

4πR
. (5)

The C(P ) factor is the ratio of the solid angle occupied
by the fluid to 4π which results in C(P ) = 1 for P ’s
placed entirely in the fluid domain and C(P ) = 0.5 if
P is placed on a smooth surface [3]. In this work the
HIE is discretized using linear quadrilateral elements re-
sulting in a matrix relation between discretized (nodal)
pressures pS and normal velocities vS on the surface S,

ApS + BvS = 0, (6)

where the matrices B and A contain terms relating
to surface integrals of Green’s function and its normal
derivative for collocation points placed at the nodal po-
sitions on the surface. (In A the C(P ) factors of the cor-
responding collocation point has been subtracted from
the diagonal terms in accordance with Eq (4).)

Likewise a discretized version of Eq (4) can be obtained
for field points:

pF = AFpS + BFvS, (7)

where each row in the matrices AF and BF refers to
integrating Eq (4) with respect to a position P in the
fluid outside S.

Combining Eqs (6) and (7) results in

pF = (−AF(A−1B) + BF)vS = HvS, (8)

which establishes the desired relation between measured
pressures and surface velocities.

2.3 ISLF

The Single Layer Formulation (SLF) is based on a dis-
tribution of simple sources (monopoles) on a surface S:

p(P ) =
∫

S

G(R)µ(Q)dS, (9)

where the Green’s function is defined in Eq (5). Eq
(9) directly relates pressures in the domain to a source
distribution µ on the surface S, and if the same dis-
cretization scheme as for the BEM is used, the resulting
matrix equation becomes,

pF = BFµ, (10)

where the matrix BF of Eq (7) occurs again, since the
kernel of Eq (9) is the same as the kernel of the second
term in Eq (4). Hence, Eq (10) is the inverse problem
to be solved for the unknown source distribution, but in
order to arrive to a physical quantity such as the surface
velocity, a relation between the regularized solution µλ

and the surface velocity must be used,

vnP
(P ) = jωρ

∫
S

∂G(R)
∂nP

µλ(Q) dS +
1
2
µλ(P ), (11)

which resembles the first term of the integral in Eq
(4) execpt that the normal derivative is taken at the
fixed point P instead of the running integration point
Q. Hence, the discretized version of the regularized ve-
locity vλ may be computed as the matrix-vector product
vλ = AnP µλ, where superscript nP indicates that the
normal is to be taken at P . For calculating the velocity
at points in the fluid outside the surface,

vnP
(P ) = jωρ

∫
S

∂G(R)
∂nP

µλ(Q) dS, (12)

must be used.

2.4 Regularization

The matrix equations in Eqs (8) and (10) are the dis-
cretized versions of the operators representing the re-
lation between source terms and field pressures. The
rapidly decaying nature of the near-field is reflected in
an ill-conditioning of the coefficient matrices, and reg-
ularization is needed in order to obtain a meaningful
solution. The Tikhonov regularized solution is found as
the least squares solution of the equation on its standard
form, i.e.

vλ = A#
λ p = (AHA + λ2I)−1AHp, (13)

where λ is the regularization parameter, I is the identity
matrix and superscript H denotes the Hermitian trans-
pose [4]. Hence, an infinity of solutions exists depending
on the choice of regularization parameter. The total per-
formance of a method for inverse sound field calculations
is a interaction between the sound field method (e.g.
SONAH or IBEM) and the Parameter Choice Method
(PCM). Several PCMs is discussed in the accompaning
paper [2], and it was found that the Normalized Cumu-
lative Periodogram (NCP) [5] worked well for the situa-
tion considered in the present work. Therefore, NCP is
used as the PCM for all cases in the present paper. In
general terms the NCP decides to include information
(singular vectors) to the solution until the Fourier trans-
form of the residual becomes as close to white noise as
possible.

For SONAH the regularized solution for the sound pres-
sure at r, pλ(r) is

pλ(r) = pT (BHB + λ2I)−1BHα(r), (14)

where B = AH , and α(r) is the vaules of the wave
functions at r [2]. The velocity in a direction can be
found using Eq (2) in Eq (14), which will affect the
term BHα(r) only.

3 Experimental Results

A series of experiments were carried out in order to eval-
uate the methods considered. A 3-mm steel plate of di-
mensions 0.4 by 0.5 m was mounted using silicone as one
face in a box of 19-mm MDF wood with the dimensions
0.4× 0.5× 0.4 m. The plate was excited near the middle
of the plate (at the position (0.18,0.19) m with random
noise using a Brüel & Kjær exciter placed inside the box
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and acting through a stinger and a Brüel & Kjær force
transducer fastened to the plate using beeswax.

In order to establish a reference for the methods the nor-
mal velocity of the plate was measured in a grid of 16 ×
14 points in the vertical and horizontal direction respec-
tively using a Ometron laser vibrometer. The spacing
between grid points was 0.03 m in both directions so
that the measurement surface covered 0.39 × 0.45 m –
i.e. almost the entire plate. Useful transfer functions
between velocity and force was aquired using a Brüel
& Kjær PULSE system in the frequency range of 100
- 3200 Hz (at very low frequencies noise dominated re-
sulting in poor coherence).

At 3200 Hz the wavelength of sound waves in air is about
0.11 m and the wavelength of a travelling bending wave
in the plate is about 0.09 m. The critical frequency is
about 4000 Hz.

A 8x8 microphone array was placed in front of the plate
at the distances 0.5, 1.5, 3.0, 4.5 cm. The spacing be-
tween microphones in the array was 3 cm in both di-
rections and transfer functions between sound pressure
and force was aquired using the PULSE system. For
each distance four complementing positions of the array
was combined to produce a measurement grid of 16 ×
16 points in total. See Fig. 1 for a sketch of the setup.

Figure 1: Sketch of the experimental setup. The box is
shown with the BEM mesh used for the forward

calculations. Measurement points for the vibrometer
are indicated with red dots, and measurement points
for the sound pressure are indicated with blue dots.

3.1 Forward Calculations

Initially a forward calculation from the measured ve-
locities to field pressures is performed and compared to
measured sound pressures in order to check the consis-
tency of the measurements and of the models. For the
calculations a direct collocation BEM is employed using
linear quadrilateral elements - see Fig. 1. The mesh size
of the BEM corresponds to the grid of measured veloc-
ities so the typical element size is 3 cm corresponding
to an upper frequency of about 2.2 kHz if five elements
per wavelength in air is required as a rule of thumb (em-
pirically leading to an error of about 10 % or less). If

five elements per structural wavelength is desired the
upper frequency is about 1300 Hz. Fig. 2 shows the rel-
ative error calculated as the relative difference between
the calculated and the measured sound pressures for the
four distances. The error is calculated using the ampli-
tude of the pressures only (discarding the phase), since
the difference in phase response between microphones
and laser vibrometer is unknown:

err =
|| |pBEM | − |pmeas| ||2

|| |pmeas| ||2
. (15)

It is seen that the error gradually increases from about
10 % at low frequencies to around 25 % at high frequen-
cies. The error is significantly higher at certain frequen-
cies which might be due poor signal to noise ratios at
anti-resonances of the plate (for these frequencies the
measured force in the denominator of the transfer func-
tion is at a minimum). Furthermore, the BEM employed
for the forward calculation is known to suffer from the
problem of non-uniqueness, which also might explain
scattered outliers. For inverse problems the problem
of non-uniqueness is less severe, since the near-singular
nature of the coefficient matrix is dealt with during the
regularization [6]. At very low frequencies (40 and 80
Hz) the error is large due to a poor signal from the laser
vibrometer, and these two frequencies have been left out
in the figures to follow.

In the frequency range where the BEM calculations can
be trusted, the difference is generally less that 20 %.

Figure 2: Relative difference between measured and
calculated sound pressure for the four array distances.
Black curve: 0.5 cm; blue curve: 1.5 cm; red curve: 3.0

cm; and green curve: 4.5 cm. The calculated sound
pressures are based on measured velocities.

For the IBEM and the ISLF these error curves repre-
sent the best results one can hope for when using in-
verse calculations. At higher frequencies a finer mesh
would probably increase the accuracy. The error can
be explained as a combination of measurement error
(e.g. noise) and modelling error (due to e.g. discretiza-
tion). The assumption that only the steel plate vibrates
might not be accurate and even though measurements
has been carried out in an anechoic room, reflections oc-
cur from the structures supporting the box and the mi-
crophone array (each microphone is modelled as a point
device). The SONAH has a quite different theoretical
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basis and includes an infinity of plane and evanescent
waves - hence, SONAH might or might not be able to
perform source reconstruction with less error than found
in Fig. 2.

3.2 Inverse calculations

The present case of a planar radiating surface and a par-
allel planar measurement microphone grid is very well
suited for the SONAH algoritm. Therefore the SONAH
calculations are used as a reference. In the accompaning
paper [2] SONAH is used with different PCMs for the
same experimental setup, and it was found that the re-
construction error of all PCMs studied was on about the
same level. However, for reconstruction with the IBEM
the NCP parameter choice method was favourable, and
therefore the NCP is used as parameter choice method
for all methods in the present paper.

In the figures to follow the relative error is shown as a
function of frequency. The relative error is calculated as
the norm of difference between measured and predicted
velocity amplitudes normalized to the norm of the mea-
sured values – i.e. a similar error measure as introduced
in Eq (15). In the error measure a grid of 12 × 16 mea-
surement points (i.e. a total of 192 points) covering the
surface of the steel plate was used in the residual and
normalization vectors.

For almost all figures outliers can be observed. A few
outliers probably occurs at anti-resonance frequencies of
the plate, for which the measured force does not provide
a good reference for the transfer functions, but gener-
ally outliers indicate that the combination of sound field
calculation method and PCM did not result in a choice
of regularisation parameter close to the optimal param-
eter.

3.2.1 SONAH

Fig. 3 shows the results produced by SONAH. It can
be seen that the reconstruction error is generally low
(10-25 %) at frequencies below 2000 Hz. Typically the
error is smaller for array positions close to the box and
there is a general tendency of an increase of error with
frequency – a similar behavior was also found for the
forward calculations (see Fig. 2). Generally the fluctu-
ations of the curves are smaller for the distances of 0.5
cm and 1.5 cm than for the curves representing stand-
off distances of 3.0 and 4.5 cm, which probably is due
to the fact that the NCP does a better job in finding a
near-optimal regularization paramater when the array
is close to the box.

3.2.2 IBEM

The reconstruction errors for the four array stand off
distances with IBEM are shown in Fig. 4. Generally the
error increases with frequency from a level of 10-20 %
at low frequencies to about 30-40 % at high frequencies.
It is worth to notice that the best performance of the
IBEM is obtained for a stand off distance of 4.5 cm. –
i.e. the largest stand off distance. This result might be

Figure 3: Relative difference between measured and
calculated velocity for the four array distances using
SONAH and NCP. Black curve: 0.5 cm; blue curve:
1.5 cm; red curve: 3.0 cm; and green curve: 4.5 cm.

The virtual source distance is 4.5 cm (1.5 microphone
spacing) larger than the physical distance

unexpected since the evanescent part of the sound field
should be more difficult to reconstruct for a large stand
off distance compared to a small stand off distance. The
explaination for this behaviour is that the PCM fails
to find a regularisation parameter close to the optimal
when the measurement array is too close to the source
[2].

Figure 4: Relative difference between measured and
calculated velocity for the four array distances using
IBEM and NCP. Black curve: 0.5 cm; blue curve: 1.5

cm; red curve: 3.0 cm; and green curve: 4.5 cm.

3.2.3 ISLF

A similar behavior is observed with the Inverse Single
Layer Formalation (see Fig. 5): The error increases
with frequency and poor reconstruction is obtained for
close array stand off distances. Generally the ISLF per-
forms as good as the IBEM, and since that the compu-
tational work associated with the ISLF is less that with
the IBEM, this method is favourable in the present test
case.
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Figure 5: Relative difference between measured and
calculated velocity for the four array distances using
ISLF and NCP. Black curve: 0.5 cm; blue curve: 1.5

cm; red curve: 3.0 cm; and green curve: 4.5 cm.

3.2.4 Retracted ISLF

A main reason for the poor performance of the IBEM
and the ISLF for array positions close to the surface of
the box, is that the PCM fails in finding a regulariza-
tion parameter, that is close to the optimal [2]. In the
present situation it turns out that the solution is under-
regularized - i.e. that the PCM choses a too small value
for the regularization parameter. This indicates that the
problem perhaps is too well-conditioned for the PCM to
work as intended.

Inspired by the fact that SONAH works with a retracted
virtual source plane, a Retracted Inverse Single Layer
Formulation (RISLF) has been applied for the present
problem. In the RSLF a virtual box is created at a
larger distance to the measurement array than the phys-
ical box. A larger distance between the (virtual) source
and the array makes the problem more ill-conditioned,
which will trigger the PCM to choose higher values of
the regularization parameter. The normal velocities on
the reconstruction surface are then calculated from the
regularized source density µλ by use of Eq (12).

Fig. 6 shows the relative error for a measurement dis-
tance of 0.5 cm, but with the virtual box placed 4.5 cm
from the measurement plane. The error increases from
about 10 % at low frequencies to about 20 % at high
frequencies. It can also be noted the only minor fluc-
turations occur, which indicates that the PCM performs
robustly for the present case.

4 Conclusions

Four methods of reconstructing the surface velocity of a
vibrating object has been studied: the Statistically Op-
timized Near Acoustical Holography, the Inverse Bound-
ary Element Method, the Inverse Single Layler Formu-
lation and the Retracted Inverse Single Layer Formu-
lation. All methods has been combined with Tikhonov
regularization using the Normalized Cumulative Peri-
odogram as the Parameter Choice Method. It was found

that all methods were able to perform a reasonable re-
construction of the surface velocity for the experimental
test case studied, but the combination of IBEM and
ISLF with NCP lead to under regularizaton when the
measurement array was close to the box. The RISLF
performed very well for the latter situation.

Figure 6: Relative difference between measured and
calculated velocity for an array distance of 0.5 cm
using Retracted ISLF and NCP. The virtual box is

retracted 4.5 cm from the measurement array
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